References
Ahn, S. (2023). Towards designerly data donation in practice.
Amaya, A., Biemer, P. P., & Kinyon, D. (2020). Total error in a big data world: Adapting the tse framework to big data. Journal of Survey Statistics and Methodology, 8 (1), 89–119. https://doi.org/10.1093/jssam/smz056
Araujo, T., Ausloos, J., Atteveldt, W. van, Loecherbach, F., Moeller, J., Ohme, J., Trilling, D., Velde, B. van de, Vreese, C. de, & Welbers, K. (2021). Osd2f: An open-source data donation framework. https://doi.org/10.31235/osf.io/xjk6t
Biemer, P. P. (2010). Total survey error: Design, implementation, and evaluation. Public opinion quarterly, 74 (5), 817–848. https://doi.org/10.1093/poq/nfq058
Biemer, P. P. (2016). Errors and inference. Big data and social science: A practical guide to methods and tools, 265–298.
Boeschoten, L., Araujo, T., Ausloos, J., M¨oller, J., & Oberski, D. (2022). A framework for privacy preserving digital trace data collection through data donation. Computational Communication Research, 4 (2), 388–423. https://doi.org/10.5117/CCR2022.2.002.BOES
Boeschoten, L., Mendrik, A., Veen, E. van der, Vloothuis, J., Hu, H., Voorvaart, R., & Oberski, D. L. (2022). Privacy-preserving local analysis of digital trace data: A proof-of-concept. Patterns, 3 (3), 100444. https://doi.org/10.1016/j.patter.2022.100444
Boeschoten, L., Voorvaart, R., Van Den Goorbergh, R., Kaandorp, C., & De Vos, M. (2021). Automatic de-identification of data download packages. Data Science, (Preprint), 1–20. https://doi.org/10.3233/DS-210035
Breuer, J., Bishop, L., & Kinder-Kurlanda, K. (2020). The practical and ethical challenges in acquiring and sharing digital trace data: Negotiating public-private partnerships. New Media & Society, 22 (11), 2058–2080. https://doi.org/10.1177/1461444820924622
Buuren, S. van. (2018). Flexible imputation of missing data. CRC press.
Chi, G., Lin, F., Chi, G., & Blumenstock, J. (2020). A general approach to detecting migration events in digital trace data. PloS one, 15 (10), e0239408. https://doi.org/10.1371/journal.pone.0239408
Collins, D. (2014). Cognitive interviewing practice. Sage.
Demetzou, K. (2019). Data protection impact assessment: A tool for accountability and the unclarifiedconcept of ‘high risk’in the general data protection regulation. Computer Law & Security Review, 35 (6), 105342. https://doi.org/10.1016/j.clsr.2019.105342
Driel, I. I. van, Giachanou, A., Pouwels, J. L., Boeschoten, L., Beyens, I., & Valkenburg, P. M. (2022). Promises and pitfalls of social media data donations. Communication Methods and Measures, 1–17. https://doi.org/10.1080/19312458.2022.2109608
European Union. (2016). Regulation (eu) 2016/679 of the european parliament and of the council. Official Journal of the European Union (OJ), 59, 1–88.
Falagas, M. E., Korbila, I. P., Giannopoulou, K. P., Kondilis, B. K., & Peppas, G. (2009). Informed consent: How much and what do patients understand? The American Journal of Surgery, 198 (3), 420–435. https://doi.org/10.1016/j.amjsurg.2009.02.010
Frankel, M. (1983). Sampling theory. Handbook of survey research, 21–67.
Gomez Ortega, A., Bourgeois, J., & Kortuem, G. (2021). Towards designerly data donation. Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, 496–501.
Groves, R. M. (1989). Survey errors and survey costs. John Wiley & Sons.
Haas, G.-C., Kreuter, F., Keusch, F., Trappmann, M., & B¨ahr, S. (2020). Effects of incentives in smartphone data collection. Big Data Meets Survey Science: A Collection of Innovative Methods.
Hibberts, M., Burke Johnson, R., & Hudson, K. (2012). Common survey sampling techniques. In Handbook of survey methodology for the social sciences (pp. 53–74). Springer. https://doi.org/10.1007/978-1-4614-3876-2 5
Hoekstra, H., Jonker, T., & Veer, N. van der. (2022). Nationale social media onderzoek 2022.
Hoofnagle, C. J., Sloot, B. van der, & Borgesius, F. Z. (2019). The european union general data protection regulation: What it is and what it means. Information & Communications Technology Law, 28 (1), 65–98. https://doi.org/10.1080/13600834.2019.1573501
Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12 (12), 2. https://doi.org/10.17705/1jais.00282
Jungherr, A. (2015). Analyzing political communication with digital trace data. Cham, Switzerland: Springer.
Keusch, F., Struminskaya, B., Antoun, C., Couper, M. P., & Kreuter, F. (2019). Willingness to participate in passive mobile data collection. Public opinion quarterly, 83 (S1), 210–235. https://doi.org/10.1093/poq/nfz007
King, G., & Persily, N. (2020). A new model for industry–academic partnerships. PS: Political Science & Politics, 53 (4), 703–709. https://doi.org/10.1017/S1049096519001021
Kmetty, Z., Stefkovics, ´A., Szamely, J., Dongning, D., Kellner, A., Omodei, E., Edit, P., & Koltai, J. (2023). Determinants of willingness to donate data from social media platforms. https://doi.org/10.17203/KDK584
Kmetty, Z., & N´emeth, R. (2022). Which is your favorite music genre? a validity comparison of facebook data and survey data. Bulletin of Sociological Methodology/Bulletin de M´ethodologie Sociologique, 154 (1), 82–104. https://doi.org/10.1177/0759106321106175
Leeuw, E. D. de, Hox, J. J., & Dillman, D. A. (2008). International handbook of survey methodology. Taylor & Francis Group/Lawrence Erlbaum Associates.
Li, C. (2021). Feel data: Public data visualization as a medium to motivate data donation.
Lohr, S. L. (2021). Sampling: Design and analysis. Chapman; Hall/CRC. https://doi.org/10.1201/9780429298899
M¨uller, N. M., Kowatsch, D., Debus, P., Mirdita, D., & B¨ottinger, K. (2019). On gdpr compliance of companies’ privacy policies. International Conference on Text, Speech, and Dialogue, 151–159. https://doi.org/10.1007/978-3-030-27947-9 13
Neff, M. J. (2008). Informed consent: What is it? who can give it? how do we improve it? Respiratory care, 53 (10), 1337–1341.
Oberski, D. L., Kirchner, A., Eckman, S., & Kreuter, F. (2017). Evaluating the quality of survey and administrative data with generalized multitrait-multimethod models. Journal of the American Statistical Association, 112 (520), 1477–1489. https://doi.org/10.1080/01621459.2017.1302338
Ohme, J., Araujo, T., Vreese, C. H. de, & Piotrowski, J. T. (2021). Mobile data donations: Assessing self-report accuracy and sample biases with the ios screen time function. Mobile Media & Communication, 9 (2), 293–313. https://doi.org/10.1177/2050157920959106
Pfiffner, N., Witlox, P., & Friemel, T. N. (2022). Data donation module (ddm). Retrieved March 20, 2023, from https://github.com/uzh/ddm
Sakshaug, J. W., & Struminskaya, B. (2023). Augmenting surveys with paradata, administrative data, and contextual data. https://doi.org/10.1093/poq/nfad026
Sen, I., Fl¨ock, F., Weller, K., Weiß, B., & Wagner, C. (2021). A total error framework for digital traces of human behavior on online platforms. Public Opinion Quarterly, 85 (S1), 399–422. https://doi.org/10.1093/poq/nfab018
Silber, H., Breuer, J., Beuthner, C., Gummer, T., Keusch, F., Siegers, P., Stier, S., & Weiß, B. (2022). Linking surveys and digital trace data: Insights from two studies on determinants of data sharing behaviour. Journal of the Royal Statistical Society Series A: Statistics in Society, 185 (Supplement 2), S387–S407. https://doi.org/10.1111/rssa.12954
Snaphaan, T., Hardyns, W., & Pauwels, L. J. (2022). Expanding the methodological toolkit of criminology and criminal justice with the total error framework. Journal of Crime and Justice, 1–18. https://doi.org/10.1080/0735648X.2022.2114099
Sørum, H., & Presthus, W. (2020). Dude, where’s my data? the gdpr in practice, from a consumer’s point of view. Information Technology & People, 34 (3), 912–929. https://doi.org/10.1108/ITP-08-2019-0433
Stier, S., Breuer, J., Siegers, P., & Thorson, K. (2020). Integrating survey data and digital trace data: Key issues in developing an emerging field. https://doi.org/10.1177/0894439319843669
Struminskaya, B. Willingness and nonparticipation biases in data donation [conference session]. In: ODISSEI Conference for Social Science in the Netherlands 2022 (November 3, 2022). https://odissei-data.nl/en/2022/09/odissei- conference- for- social- science- in- the- netherlands-2022/
Struminskaya, B., Toepoel, V., Lugtig, P., Haan, M., Luiten, A., & Schouten, B. (2020). Understanding willingness to share smartphone-sensor data. Public Opinion Quarterly, 84 (3), 725–759. https://doi.org/10.1093/poq/nfaa044
Toepoel, V. (2012). Effects of incentives in surveys. Handbook of survey methodology for the social sciences, 209–223.
Veale, M., & Ausloos, J. (2021). Researching with data rights. Technology and Regulation, 136–157. https://doi.org/10.26116/techreg.2020.010
Wachter, S. (2018). Normative challenges of identification in the internet of things: Privacy, profiling, discrimination, and the gdpr. Computer law & security review, 34 (3), 436–449. https://doi.org/10.1016/j.clsr.2018.02.002
Weisberg, H. F. (2009). The total survey error approach: A guide to the new science of survey research. University of Chicago Press.
Zhang, L.-C. (2012). Topics of statistical theory for register-based statistics and data integration.
Statistica Neerlandica, 66 (1), 41–63. https://doi.org/10.1111/j.1467-9574.2011.00508.x